×

Request a callback
Coffee break-pana 3 2 Thanks for connecting!
Our academic counsellor will reach out to you within the next 24 hours between 10am-10pm IST.

World's Greatest Stadium Designs

Nandita

8 min read

March 24, 2023

blog

Table of Contents

In this blog, we will read about some of the most famous stadium designs around the world and the unique and innovative design features that make them stand out. 

Let’s go through them.

1. Al Janoub Stadium

Al Janoub Stadium

Location: Al Wakrah, Qatar
Capacity: 40,000 nos. (Reduced to 20,000 after FIFA 2022)
Architect: Zaha Hadid Architects

Al Wakrah has historically been a small fishing and pearl diving village in Qatar and has contributed to a significant part of the country’s economy. The design of Al Janoub Stadium, including its structure, the materials used, and the colour palette draws its inspiration from the traditional ‘dhow’ boats, used in the waters of the city for fishing and diving.

The stadium's roof appears as if the dhows have been turned upside down and woven together to shade the spectators and the beam structure of the roof imitates the interior of the hull of the boat with the outward slanting facades reflecting its sails. In addition to this, Arabic motifs and calligraphy are imitated on the outer texture as pleated cross sections in the roof and wall areas. 
The stadium can be used all year round as the cooling load has been minimised by using solar energy. After the 2022 FIFA World Cup, the authorities removed half of the seats (40,000 to 20,000) to donate them to the nations that needed more advanced infrastructure. This certainly had been made possible by the concept of the design being open to changeable capacity. 

2. Tottenham Hotspur Stadium

Al Janoub Stadium Interior

Location: London, UK
Capacity: 62,062 nos.
Architect: Populous + Maze

The purpose was to create this public space in a way so that the people could effectively enjoy the amenities and the excitement of the matches being held. 
The spectator stands are inclined at 35 degrees, the steepest according to UK regulations, which helps concentrate the viewers' focus on the events happening in the central space. All the fans, irrespective of the position of their seats, get to have an amazing experience of the game. This is in addition to the comfort of the seating that is designed with ample legroom space. Also, the turf of the pitch can be removed for purposes of other public events like concerts or music festivals. 

3. Mercedes Benz Stadium

Mercedes Benz Stadium

Location: Atlanta, USA
Capacity: 71,000 nos. (Football) and 32,456 nos. (Soccer)
Architect: TVS Design + HOK Architects Atlanta + Buro Happold 

The wings of a falcon inspire the design of the retractable roof supported on eight movable petals. Similar to the aperture of the lens of a camera, these petals open and close, adjusting the amount of sunlight and fresh air that enters the stadium.  

The ETFE (Ethylene Tetrafluoroethylene) cushions used in the movable roof are not only aesthetic but the inert film, protected from the effects of UV radiation and pollutants, strengthens the sustainability of the structure as a whole. Water consumption is regulated by the use of efficient water fixtures and the LED use in the facade design reduces energy and maintenance costs of the structure. 
The users can also benefit from the communal amenities at the venue which include bars, restaurants and a technology lounge with a floor-to-ceiling window, offering stunning views of Atlantic City. 

4. Hokkaido Ballpark

Hokkaido Ballpark Render

Location: Sapporo, Hokkaido, Japan
Capacity: 35,000 nos.
Architect: HKS Architects

The region of Hokkaido, known for its sub-zero temperatures and snowy weather, posed challenging design conditions for the construction of this stadium. However,  it managed to emerge victoriously as a public infrastructure example reflecting the landscape of the region.
The challenge was to create spectacular game experiences in the cold weather and grow natural turf for the safety of the players. The retractable roof of the stadium is designed to hold up to 14 feet of snow and the asymmetrical orientation of the stadium allows for maximum sun rays to support the growth of the turf and the variation of spectator experiences. This design encourages the viewers to not only enjoy the match but also the undisturbed view of the mountains. In fact, its landscape inculcates natural features like forests and ravines contributing to Hokkaidu’s economy.

5. Soccer City Stadium

Soccer City Stadium

Location: Johannesburg, South Africa
Capacity: 94,736 nos.
Architect: Boogertman Urban Edge + Populous

The structure evokes a sense of pride and hope for the city of Johannesburg. The ‘Calabash’ which is a traditional melting pot of Africa is reflected on the facade of the stadium. At night, when this set-up lights up, it represents the melting mix of different cultures coming together in this pot. As a host to the FIFA World Cup, it echoes the culture of the region.

The local materials used in the construction of the cladding system of the facade provide it with a unique appearance while the punctures in this pot allow natural airflow which when lit up, mirror the star-filled African skies. In addition to that, the PTFE and polycarbonate membranes that cover the triangular spatial ring truss in yellowish-grey colour, mimic the local sand from the area.

6. AAMI Park 

AAMI Park

Location: Melbourne, Australia
Capacity: 30,050 nos.
Architect: COX Architecture + Arup Engineers

The thought behind the design of the stadium was to create a visually striking  and functional venue as well as serve as a hub for community events and sports. This idea shows on the facade of this stadium, which looks similar to several bubbles clamped together, enclosing a consciously designed seating arrangement that provides amazing views of the stadium while being close to the spectacle ground.

The most striking feature of the AAMI Park is the lightweight ‘bio-frame’ design of its geodesic dome roof. This has halved the steel that a stadium roof of the same size typically requires. Also, the panels in the triangular facets are composed of glass, metal, and rainwater collection facilities. The sustainability is also maintained by the LED lights which use 1/10th of the power that is usually used to floodlight the surface of equivalent size. The roof also provides an ample amount of sunlight to the ground along with a strong structure. This fabrication and construction of the roof was made possible by the use of Computational Design Software.

7. Baku Crystal Hall

 Baku Crystal Hall

Location: Baku, Azerbaijan
Capacity: 12,000 nos.(seating), 27,000 nos. (standing)
Architect: GMP Architekten

The beauty of the design of Baku Crystal Hall lies in its symmetrically folded facade, inspired by the shape of carved crystals. At night time, these beams converge like a tornado funnel. The facade comprises 9500-LEDs on its crystalline design. The light’s colors are the changing colours of the Caspian Sea during the night, located towards the north of the city of Baku.

The translucency in the facade allows light to pass through it and create a shimmering effect. The design can accommodate up to 27,000 people, making it one of the largest indoor stadiums in the region.

8. Allianz Arena

Allianz Arena

Location: Munich, Germany
Capacity: 66,000 nos.
Architect: Arup Group + Herzog and de Meuron

Allianz Arena is a model example of football’s significance in German culture and society. The stadium’s fabric functions like a ‘chameleon’ and changes its colours, instilling visual excitement in its visitors.

The facade accommodates translucent claddings in the shape of diamonds made of ETFE cushions, each of which can be changeably illuminated in colours of white, red or blue. The dynamism of the exterior enhances the experiences of the guests as it brings a newness at every moment. Also, the increased inclination and proximity to the field create spatial density in the crate-like interior. The surface of the roof is self-cleansing. Lastly, computer simulation has been used to design paths that decrease evacuation time during an emergency.

Conclusion

The above examples demonstrate how great stadium designs, while meant to host events, initiate memorable experiences through their carefully thought-out design strategies. Not only this, but they are also a representative of the host countries and a region’s identity.

Want to learn more about Stadium Design?

Stadium design is a specialization in the Masters in Computational Design course offered by Novatr. This course helps you understand the subject theory, master advanced tools, and build your expertise. The course helps you:

  • Become a Computational Design Specialist in just 8 months of part-time, online study.
  • Learn from industry experts working at top firms like ZHA, Populous, and UNStudio.
  • Master 6+ software, 15+ plugins and industry workflows.
  • Build a core specialisation in High-Performance Building Analysis or Computational BIM Workflow.
  • Get placement assistance to land jobs in globally operating firms.

Get your hands on Parametric Design software to be able to design such intricate facade systems.